
CarPlay App
Programming Guide

March 2024

 Developer

Table of Contents
Introduction ..3
Overview ...4
CarPlay app guidelines ..5
Development environment ..10

Entitlements ..10
Simulators ...13

Templates ...15
Action sheet ..16
Alert ...16
Contact ..17
Grid ..17
Information ..18
List ...19
Now playing ...20
Point of interest ..21
Tab bar ..22

Notifications ...23
Assets ...24
Audio handling ...26

Playback ...26
Recording ...26

Build a CarPlay app ..27
Startup ..27
Create a list template ..29
Create a now playing template ..30
Work while iPhone is locked ...31
Launch other apps ...31

Build a CarPlay navigation app ...32
Supported displays ...32
Additional templates for navigation apps ...33
Startup ..41

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 1 65

Route guidance ...43
Keyboard and list restrictions ..49
Voice prompts ..50
Show second map in CarPlay Dashboard or the instrument cluster 52
Show metadata in the instrument cluster or HUD ..54
Test your navigation app ..59

Sample code ..63
Publish your CarPlay app ..64

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 2 65

Introduction
CarPlay is a smarter, safer way to use your iPhone in the car. CarPlay takes the things you want to
do with your iPhone while driving and puts them right on your car's built-in display.
In addition to getting directions, making calls, sending and receiving messages, and listening to
music, CarPlay supports the following types of apps.
• Audio
• Communication (messaging and calling)
• Driving task
• EV charging
• Fueling
• Navigation (turn-by-turn directions)
• Parking
• Quick food ordering
This guide describes how to create these types of CarPlay apps.

Note This guide does not cover CarPlay automaker apps (published by automakers).

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 3 65

Overview
People download CarPlay apps from the App Store and use them on iPhone like any other app.
When connected to a CarPlay vehicle, the app icon appears on the CarPlay home screen. CarPlay
apps are not separate apps—you add CarPlay support to your existing app.
CarPlay apps are designed to look and feel like your app on iPhone, but with UI elements that are
similar to built-in CarPlay apps.
Your app uses the CarPlay framework to present UI elements to the user. iOS manages the display
of UI elements and handles the interface with the car. Your app does not need to manage the
layout of UI elements for different screen resolutions, or support different input hardware such as
touchscreens, knobs, or touch pads.
CarPlay apps must meet the basic requirements defined in the CarPlay Entitlement Addendum,
and must follow the CarPlay App Guidelines.
For general design guidance, see Human Interface Guidelines for CarPlay.

CarPlay app entitlements
All CarPlay apps require a CarPlay app entitlement that matches your app type.
To request a CarPlay app entitlement, go to http://developer.apple.com/carplay and provide
information about your app, including the type of entitlement that you are requesting. You also
need to agree to the CarPlay Entitlement Addendum.
Apple will review your request. If your app meets the criteria for a CarPlay app, Apple will assign a
CarPlay app entitlement to your Apple Developer account and notify you.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 4 65

https://developer.apple.com/design/human-interface-guidelines/carplay
https://developer.apple.com/carplay

CarPlay app guidelines
All CarPlay apps must adhere to the following guidelines.

Guidelines for all CarPlay apps
1. Your CarPlay app must be designed primarily to provide the specified feature to a user (e.g.

CarPlay audio apps must be designed primarily to provide audio playback services, CarPlay
parking apps must be designed primarily to provide parking services, etc.).

2. Never instruct users to pick up their iPhone to perform a task. If there is an error condition,
such as a required log in, you can let users know about the condition so they can take action
when safe. However, user messages must not include wording that asks users to manipulate
their iPhone.

3. All CarPlay user flows must be possible without interacting with iPhone.
4. All CarPlay user flows must be meaningful to use while driving. Don’t include features in

CarPlay that aren’t related to the primary task (e.g. unrelated settings, maintenance features,
etc.).

5. No gaming or social networking.
6. Never show the content of messages, texts, or emails on the CarPlay screen.
7. Use templates for their intended purpose, and only populate templates with the specified

information types (e.g. a list template must be used to present a list for selection, album
artwork in the now playing screen must be used to show an album cover, etc.).

8. All voice interaction must be handled using SiriKit (with the exception of CarPlay navigation
apps, see below).

Additional guidelines for CarPlay audio apps
1. Never show song lyrics on the CarPlay screen.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 5 65

Additional guidelines for CarPlay communication (messaging and calling) apps
1. Communication apps must provide either short form text messaging features, VoIP calling

features, or both.
2. Email is not considered short form text messaging and is not permitted.
3. Communication apps that provide text messaging features must support all 3 of the following

SiriKit intents:
• Send a message (INSendMessageIntent)
• Request a list of messages (INSearchForMessagesIntent)
• Modify the attributes of a message (INSetMessageAttributeIntent)

4. Communication apps that provide VoIP calling features must support CallKit, and all of the
following SiriKit intents:
• Start a call (INStartCallIntent)
• Start an audio-only call (INStartAudioCallIntent) required for apps that support iOS

14 and earlier
• Request a list of calls (INSearchCallHistoryIntent) required for apps that support iOS

14 and earlier

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 6 65

Additional guidelines for CarPlay driving task apps
1. Driving task apps must enable tasks people need to do while driving. Tasks must actually help

with the drive, not just be tasks that are done while driving.
2. Driving task apps must use the provided templates to display information and provide controls.

Other kinds of CarPlay UI (e.g. custom maps, real-time video) are not possible.
3. Do not show CarPlay UI for tasks unrelated to driving (e.g. account setup, detailed settings).
4. Do not periodically refresh data items in the CarPlay UI more than once every 10 seconds (e.g.

no real-time engine data).
5. Do not periodically refresh points of interest in the POI template more than once every 60

seconds.
6. Do not create POI (point of interest) apps that are focused on finding locations on a map.

Driving tasks apps must be primarily designed to accomplish tasks and are not intended to be
location finders (e.g. store finders).

7. Use cases outside of the vehicle environment are not permitted.

Additional guidelines for CarPlay EV charging apps
1. EV charging apps must provide meaningful functionality relevant to driving (e.g. your app can’t

just be a list of EV chargers).
2. When showing locations on a map, do not expose locations other than EV chargers.

Additional guidelines for CarPlay fueling apps
1. Fueling apps must provide meaningful functionality relevant to driving (e.g. your app can’t just

be a list of fueling stations).
2. When showing locations on a map, do not expose locations other than fueling stations.

Additional guidelines for CarPlay parking apps
1. Parking apps must provide meaningful functionality relevant to driving (e.g. your app can’t just

be a list of parking locations).
2. When showing locations on a map, do not expose locations other than parking.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 7 65

Additional guidelines for CarPlay navigation (turn-by-turn directions) apps
1. Navigation apps must provide turn-by-turn directions with upcoming maneuvers.
2. The base view must be used exclusively to draw a map. Do not draw windows, alerts, panels,

overlays, or user interface elements in the base view. For example, don’t draw lane guidance
information in the base view. Instead, draw lane guidance information as a secondary
maneuver using the provided template.

3. Use each provided template for its intended purpose. For example, maneuver images must
represent a maneuver and cannot represent other content or user interface elements.

4. Provide a way to enter panning mode. If your app supports panning, you must include a button
in the map template that allows the user to enter panning mode since drag gestures are not
available in all vehicles. Drag gestures must only be used for panning the map.

5. Immediately terminate route guidance when requested. For example, if the user starts route
guidance using the vehicle’s built-in navigation system, your app delegate will receive a
cancelation notification and must immediately stop route guidance.

6. Correctly handle audio. Voice prompts must work concurrently with the vehicle’s audio system
(such as the user listening to the car’s FM radio) and your app should not needlessly activate
audio sessions when there is no audio to play.

7. Ensure that your map is appropriate in each supported country.
8. Be open and responsive to feedback. Apple may contact you in the event that Apple or

automakers have input to design or functionality.
9. Voice control must be limited to navigation features.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 8 65

Additional guidelines for quick food ordering apps
1. Quick food ordering apps must be Quick Service Restaurant (QSR) apps designed primarily for

driving-oriented food orders (e.g. drive thru, pick up) when in CarPlay and are not intended to
be general retail apps (e.g. supermarkets, curbside pickup).

2. Quick food ordering apps must provide meaningful functionality relevant to driving (e.g. your
app can’t just be a list of store locations).

3. Simplified ordering only. Don’t show a full menu. You can show a list of recent orders, or
favorites limited to 12 items each.

4. When showing locations on a map, do not expose locations other than your Quick Service
Restaurants.
The following example shows how to structure a quick food ordering app in CarPlay. The app
provides four tabs which allow the user select a store, view a list of recent orders or favorite
items, and confirm order information. The icons and text may be customized.
Locations, lists, and information screens are limited to 12 items. Quick food ordering user flows
should be simple and limited to the most common tasks. Show only the most important and
relevant information.

Tab bar in a quick food ordering app

Recent orders or favorite items marked by the user
Order informationStore locator

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 9 65

Development environment
Xcode and an Apple Developer Program account are required to create apps for CarPlay.

Entitlements
Once you have received a CarPlay app entitlement, create a new Provisioning Profile that includes
the CarPlay app capability.
1. Log in to your Apple Developer Account https://developer.apple.com/account/.
2. Under Certificates, IDs & Profiles, select Identifiers.
3. Select the App ID associated with your app, or create a new App ID.
4. Select the Additional Capabilities tab.
5. Enable all necessary CarPlay app entitlements for your app.
6. Click Save on the top right.
7. Continue to Provisioning Profiles and create a new provisioning profile for your App ID.
For additional information, see Developer Account Help.
https://developer.apple.com/help/account/
After you have created a new Provisioning Profile, import it into Xcode. Xcode and Simulator
require a Provisioning Profile that supports CarPlay.
In Xcode, create an Entitlements.plist file in your project, if you don't have one already. Add
your CarPlay app entitlement keys as a boolean key. The following example is for a CarPlay audio
app.

<key>com.apple.developer.carplay-audio</key>
<true/>

In Xcode, under Signing & Capabilities turn off Automatically manage signing, and under Build
Settings ensure that Code Signing Entitlements is set to the path of your Entitlements.plist
file.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 10 65

https://developer.apple.com/account/
https://developer.apple.com/help/account/

Once a CarPlay app entitlement is added to your app, your app icon will appear on the CarPlay
home screen. You cannot selectively show or hide CarPlay for certain users. Only publish your app
with CarPlay support when you are ready for everyone to see it.
See Sample Code for project examples.
Use the entitlement key(s) that match your selected provisioning profile.

Entitlement Key
Minimum iOS
version

CarPlay Audio App (CarPlay framework)
App supports the CarPlay framework.
If your app supports iOS 13 or earlier, this entitlement
may be combined with the deprecated CarPlay Audio
App (Media Player framework) entitlement.

com.apple.developer.carplay-audio iOS 14

CarPlay Communication App
App supports the CarPlay framework, and SiriKit intents
for messaging or VoIP calling apps.
If your app supports iOS 13 or earlier, this entitlement
may be combined with the deprecated CarPlay
Messaging App entitlement and/or CarPlay VoIP Calling
App entitlement.

com.apple.developer.carplay-communication iOS 14

CarPlay Driving Task App com.apple.developer.carplay-driving-task iOS 16

CarPlay EV Charging App
This entitlement may be combined with the CarPlay
Fueling App entitlement.

com.apple.developer.carplay-charging iOS 14

CarPlay Fueling App
This entitlement may be combined with the CarPlay EV
Charging App entitlement.

com.apple.developer.carplay-fueling iOS 16

CarPlay Navigation App com.apple.developer.carplay-maps iOS 12

CarPlay Parking App com.apple.developer.carplay-parking iOS 14

CarPlay Quick Food Ordering App com.apple.developer.carplay-quick-ordering iOS 14

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 11 65

Deprecated entitlements
Audio apps can support the CarPlay framework (recommended), Media Player framework
(deprecated), or both. Be sure to include the correct entitlement(s) to match the framework(s)
your app actually supports. On iOS 14 and later, the CarPlay framework will be used if your app
supports both frameworks.
If your app needs to work on iOS 13 and earlier, also support the Media Player framework and
include the com.apple.developer.playable-content entitlement. Apps that only support the
Media Player framework will work on later versions of iOS, but without a customized user interface.

Communication apps can support the CarPlay framework in addition to SiriKit and CallKit. Be sure
to include the correct entitlement(s) to match the frameworks and features you support.
If your app needs to work on iOS 13 and earlier, also include the
com.apple.developer.carplay-messaging and/or com.apple.developer.carplay-
calling entitlements to match your app features. Apps that don’t support the CarPlay framework
will still work on later versions of iOS, but without a customized user interface.
All communication apps must support required SiriKit intents, and CallKit (for calling apps). For a
list of required SiriKit intents for communication apps, see CarPlay app guidelines.

Entitlement Key

CarPlay Audio App (Media Player framework)
Deprecated. App supports the Media Player framework. Include both CarPlay
audio app entitlements if your app supports the CarPlay framework and the
Media Player framework.

com.apple.developer.playable-content

Entitlement Key
CarPlay Messaging App
Deprecated. App relies solely on SiriKit and supports SiriKit intents to send,
request, and modify messages. May be combined with the CarPlay
Communication App entitlement, and the optional CarPlay VoIP Calling App
entitlement to support iOS 13 and earlier.

com.apple.developer.carplay-messaging

CarPlay VoIP Calling App
Deprecated. App relies solely on SiriKit and CallKit, and supports SiriKit intents
for starting calls and requesting a list of calls. May be combined with the CarPlay
Communication App entitlement, and the optional CarPlay Messaging App
entitlement to support iOS 13 and earlier.

com.apple.developer.carplay-calling

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 12 65

Simulators
Apple provides two simulators to help you develop and test your CarPlay app. CarPlay Simulator is
a tool that simulates a complete car environment and requires you to install your app on iPhone.
Xcode Simulator includes a CarPlay window that lets you run and debug your CarPlay UI. It’s
recommended that you download and use CarPlay Simulator to closely match the behavior of
CarPlay in a car.

CarPlay Simulator
CarPlay Simulator is a standalone Mac app that simulates a complete car environment. CarPlay
Simulator is included in the Additional Tools for Xcode package which you can download from
https://developer.apple.com/download/all/.
Locate CarPlay Simulator in the Hardware folder, run it, and connect iPhone using a USB cable.
CarPlay starts on iPhone just the same as if you had it connected to a real car.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 13 65

https://developer.apple.com/download/all/?q=Additional%20Tools%20for%20Xcode

Xcode Simulator
Xcode Simulator lets you run and debug your CarPlay UI in a second window. The window acts as
the car’s display and allows you to interact with your CarPlay app in a similar manner to when you
are connected to a CarPlay system.
To access CarPlay in Xcode Simulator, launch Simulator and select I/O, External Displays, and
CarPlay to show a CarPlay screen.
Xcode Simulator is useful for regular build and test cycles for your CarPlay UI, but you should not
rely exclusively on Xcode Simulator for all CarPlay app development. Here are some scenarios that
require CarPlay Simulator or an actual CarPlay environment, and cannot be tested using Xcode
Simulator.
• Testing while iPhone is locked. Most users interact with CarPlay while iPhone is locked so you

need to ensure that your app works correctly even when iPhone is locked.
• Testing runtime scenarios such as switching between CarPlay and the car’s built-in UI, or

connecting and disconnecting iPhone.
• Testing scenarios where the car is playing audio. Remember that additional audio sources may

be playing while CarPlay is active and your app must be a good audio citizen. For example,
activating an audio session in your app has the side effect of immediately stopping the car’s
FM radio so you must only activate your audio session when you are ready to play audio.

• Testing Siri features with your app.
• Testing features that depend on location.
• Testing your navigation app with instrument cluster displays.

Testing using a vehicle or aftermarket head unit
You can also test your CarPlay app using an actual vehicle or an aftermarket head unit with a
power supply. If you use an aftermarket head unit, choose one that supports wireless CarPlay so
you can simultaneously connect iPhone to the head unit and to Xcode on your Mac using a cable.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 14 65

Templates
CarPlay apps are built from a fixed set of UI templates that iOS renders on the CarPlay screen.
CarPlay apps are responsible for selecting which template to show on the screen (the controller),
and providing data to be shown inside the template (the model). iOS is responsible for rendering
the information in CarPlay (the view).
The CarPlay framework includes general purpose templates such as alerts, lists, and tab bars. It
also includes templates designed for specific tasks such as contacts, maps, and now playing.
Each CarPlay app type supports specific templates and this is governed by the app entitlement.
Attempting to use an unsupported template triggers an exception at runtime.

*1 New in iOS 17.
There is a limit to the number of templates (depth of hierarchy) that you can push onto the screen.
Most apps are limited to a depth of 5 templates. Fueling apps are further limited to 3 templates,
and driving task and quick food ordering apps are limited to 2 templates. These include the root
template.

Audio Communication Navigation

Driving task, EV
charging, fueling,

parking, and quick
food ordering

Action Sheet က *1 က က က
Alert က က က က
Grid က က က က
List က က က က
Tab bar က က က က
Information က က က
Point of Interest က
Now Playing က က *1

Contact က က
Map က
Search က
Voice control က

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 15 65

Action sheet
An action sheet is a specific style of alert that appears in response to a control or action, and
presents a set of two or more choices related to the current context. Use action sheets to let
people initiate tasks, or to request confirmation before performing a potentially destructive
operation.

Action sheet

Alert
Alerts convey important information related to the state of your app. An alert consists of a title and
one or more buttons. You can provide titles of varying lengths and let CarPlay choose the title that
best fits the available screen space. If underlying conditions permit, alerts can be dismissed
programatically.

Alert

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 16 65

Contact
Contacts allow you to present information about a person or business. A contact consists of an
image, title, subtitle, and action buttons. Use action buttons to let users perform tasks related to
the current contact, such as making a phone call or sending a message.

Contact

Grid
A grid is a specific style of menu that presents up to eight choices represented by an icon and a
title. Use the grid template to let people select from a fixed list of items. The grid also includes a
navigation bar with a title, leading buttons, and trailing buttons which can be shown as icons or
text.

Grid

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 17 65

Information
An information screen is a specific style of list that presents a limited number of static labels with
optional footer buttons. Labels can appear in a single column or in two columns. Starting in iOS 16,
the information template can also include leading and trailing navigation bar buttons.
Use the information template to show important information. For example, an EV charging app
may display information about a charging station such as availability, while a quick food ordering
app may display an order summary such as pick-up location and time.
Since the number of labels is limited, show only the most important summary information needed
to complete a task.

Information

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 18 65

List
A list presents data as a scrolling, single-column table of rows that can be divided into sections.
Lists are ideal for text-based content, and can be used as a means of navigation for hierarchical
information.
Each item in a list can include attributes such as an icon, title, subtitle, disclosure indicator,
progress indicator, playback status, or read status. Use a general list item if you just need to show
an icon with text, or choose a specific list item such as the image row list item which is useful in
audio apps, or the messages list item which is useful in communication apps.
Some cars dynamically limit lists to 12 items. You can check for the maximum number of items, but
you always need to be prepared to handle the case where only 12 items are shown.
If your app supports SiriKit, you can add an “Ask Siri …” item that appears in the list.

List

List with an image row list item

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 19 65

Now playing
The now playing screen presents information about the currently playing audio, such as title, artist,
elapsed time, and album artwork. It also lets people control your app using playback control
buttons.
The now playing screen is customizable and you should adapt it to your needs. For example, you
can provide a link to upcoming tracks, the playback control buttons can be customized with your
own icons, and the elapsed time indicator can be configured for fixed-length audio or for open
ended audio such as a live stream.
The now playing template is special because users can directly access it from the CarPlay home
screen or through the now playing button in your app’s navigation bar. You must be prepared to
populate the now playing template at all times.
Only the list template may be pushed on top of the now playing template. For example, if your app
enables the “Playing Next” button in the now playing template, you can respond by showing a list
template containing the upcoming playback queue.

Now playing

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 20 65

Point of interest
A point of interest screen lets the user browse nearby locations on a map and choose one for
further action.
The point of interest template includes a map provided by the MapKit framework, and an overlay
containing a list of up to 12 locations with customizable pin images. Starting in iOS 16, you may
optionally provide a larger pin image for the currently selected location. The list of locations should
be limited to those that are most relevant or nearby.

Point of interest

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 21 65

Tab bar
The tab bar is a versatile container for other templates, where each template occupies one tab in
the tab bar. People can use the tab bar to rapidly switch between different templates.
Use CPTabBarTemplate maximumTabCount to determine the maximum number of tabs that can
be displayed. In current versions of iOS, the tab bar allows up to 4 tabs for audio apps and up to 5
tabs for all other app types, although this may change in the future.
When your app is playing audio, CarPlay displays a now playing button in the top right corner of
the tab bar for easy access to playback controls. The now playing button may not appear if your
tab bar has more than 4 tabs.

Tab bar

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 22 65

Notifications
Notifications are supported in CarPlay communication, EV Charging, and parking apps.
Notifications should be used sparingly in CarPlay and must be reserved for important tasks
required while driving. Do not use notifications in CarPlay for features that are only relevant when
using your app on iPhone. In general, notifications are not read aloud in CarPlay.
Note that route guidance notifications in CarPlay navigation apps are handled by the CarPlay
framework itself and are not part of the standard app notification mechanism.

Request authorization to show notifications
In order to show notifications in CarPlay, include the carPlay option when requesting
authorization for notifications.
Users can use Settings to show or hide your app’s notifications in CarPlay. Gracefully disable
notification-related features if the user declines to show notifications in CarPlay.

let authorizationOptions : UNAuthorizationOptions = [.badge, .sound, .alert, .carPlay]

let notificationCenter = UNUserNotificationCenter.current()

notificationCenter.requestAuthorization(options: authorizationOptions) {

 (granted, error) in

 // Enable or disable app features based on authorization

}

Create a notification category with the CarPlay option
In addition to requesting authorization, your app must enable CarPlay for the notification
categories you want displayed. To enable CarPlay, create a notification category with the
allowInCarPlay option. Assign an identifier to the category, and make sure that any local or
remote notifications for messages have the same category identifier.
If you are developing a CarPlay communication app, also see Implementing communication
notifications for more details on messaging notifications. In CarPlay, notifications must only
include information such as the sender and group name in the title and subtitle. The contents of
the message must never be shown in CarPlay.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 23 65

https://developer.apple.com/documentation/usernotifications/implementing_communication_notifications
https://developer.apple.com/documentation/usernotifications/implementing_communication_notifications

Assets
Prepare CarPlay assets for images used in templates such as icons and buttons. Note that CarPlay
supports multiple scales and both light and dark interfaces so you should take this into account
when creating assets. Create versions that are suitable for 2x and 3x scale factors, and for light
and dark styles.
Turn on CarPlay assets in Xcode and populate the CarPlay 2x and 3x image wells.

Turn on CarPlay assets

Populate the CarPlay 2x and 3x image wells

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 24 65

Use the following size guidance when creating images.

If you create assets programmatically, use UIImageAsset to combine UIImage instances into
single image with both light and dark trait collections.
If you need to know the CarPlay screen scale at runtime, use the trait collection
carTraitCollection to obtain the display scale. Don’t use other parameters in the
carTraitCollection and be sure to get the scale for the car’s screen (not the scale for the
iPhone screen).
To determine the sizes of images used in lists, use maximumImageSize in CPListItem and
CPListImageRowItem to obtain the maximum image size and provide images with matching
resolution.
Use CarPlay Simulator to test your app and see how it appears under different conditions,
including screen resolutions, scale factors, and light/dark styles.

Maximum size
in points

Maximum size
in pixels (3x)

Maximum size
in pixels (2x)

Contact action button 50pt x 50pt 150px x 150px 100px x 100px
Grid icon 40pt x 40pt 120px x 120px 80px x 80px
Now playing action button 20pt x 20pt 60px x 60px 40px x 40px
Tab bar icon 24pt x 24pt 72px x 72px 48px x 48px

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 25 65

Audio handling
Playback
If your app plays audio, ensure that it works well with audio sources in the car.
Only activate your audio session the moment you are ready to play audio. When you activate your
audio session, other audio sources in the car will stop. For example, if a user is listening to the
car’s FM radio and you active your audio session too soon, the FM radio will stop. People expect
FM radio to continue to play until they explicitly choose to play an audio stream in your app. Don’t
simply activate your audio session at the time your app launches. Instead, wait until you actually
need to play audio.
If you are developing a CarPlay navigation app, see Voice prompts for details on playing voice
prompts for upcoming route maneuvers.

Recording
In general, recording is not supported while in CarPlay. If your app has recording features, don’t
enable them when CarPlay is active. If you activate an audio session with recording enabled, it can
affect audio playback from other sources and impact audio input for the car’s own functions such
as voice assistants and phone calls. While in CarPlay, configure audio sessions without recording
features.
An exception is for CarPlay navigation apps which use recording features for voice input. In
CarPlay navigation apps, recording features may be used, but only in conjunction with the voice
control template.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 26 65

Build a CarPlay app
Startup
All CarPlay apps must adopt scenes and declare a CarPlay scene to use the CarPlay framework.
You can declare a scene dynamically, or you can include an application scene manifest in your
Info.plist file. The following is an example of an application scene manifest that declares a
CarPlay scene. You can add this to the top level of your app's Info.plist file.

<key>UIApplicationSceneManifest</key>

<dict>

 <key>UISceneConfigurations</key>

 <dict>

 <!-- Declare device scene -->

 <key>UIWindowSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>UIWindowScene</string>

 <key>UISceneConfigurationName</key>

 <string>Phone</string>

 <key>UISceneDelegateClassName</key>

 <string>MyAppWindowSceneDelegate</string>

 </dict>

 </array>

 <!-- Declare CarPlay scene -->

 <key>CPTemplateApplicationSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>CPTemplateApplicationScene</string>

 <key>UISceneConfigurationName</key>

 <string>MyApp-Car</string>

 <key>UISceneDelegateClassName</key>

 <string>MyApp.CarPlaySceneDelegate</string>

 </dict>

 </array>

 </dict>

</dict>

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 27 65

In the above example, the app declares 2 scenes—one for the iPhone screen, and one for the
CarPlay screen.
The name of the class that serves as the scene delegate is defined in the manifest by
UISceneDelegateClassName. Your delegate must conform to
CPTemplateApplicationSceneDelegate. Listen for the didConnect and didDisconnect
methods to know when your app has been launched on the CarPlay screen. Remember, your app
may be launched only on the CarPlay screen.
When your app is launched, you will receive a CPInterfaceController that manages all the
templates on the CarPlay screen. Hold onto the controller since you’ll need it to manage
templates, such as showing a now playing screen or an alert.
On launch, you must also specify a root template. In the example below, the app specifies a
CPListTemplate as the root template.

import CarPlay

class CarPlaySceneDelegate: UIResponder, CPTemplateApplicationSceneDelegate {

 var interfaceController: CPInterfaceController?

 // CarPlay connected

 func templateApplicationScene(_ templateApplicationScene: CPTemplateApplicationScene,

 didConnect interfaceController: CPInterfaceController) {

 self.interfaceController = interfaceController

 let listTemplate: CPListTemplate = ...

 interfaceController.setRootTemplate(listTemplate, animated: true)

 }

 // CarPlay disconnected

 func templateApplicationScene(_ templateApplicationScene: CPTemplateApplicationScene,

 didDisconnect interfaceController: CPInterfaceController) {

 self.interfaceController = nil

 }

}

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 28 65

Create a list template
The following example shows how to create a list containing a single list item with a title and a
subtitle.
When the user selects a list item, your list item handler will be called. You should take appropriate
action here, such as starting audio playback in the case of an audio app. If you initiate
asynchronous work and don’t immediately call the completion block, CarPlay will display a spinner
to let the user know that your app is busy. When you’re ready to continue, you must call the
completion block to tell CarPlay to remove the spinner.

import CarPlay

let item = CPListItem(text: “My title", detailText: “My subtitle")

item.listItemHandler = { item, completion, [weak self] in

 // Start playback asynchronously…

 self.interfaceController.pushTemplate(CPNowPlayingTemplate.shared(), animated: true)

 completion()

}

let section = CPListSection(items: [item])

let listTemplate = CPListTemplate(title: "Albums", sections: [section])

self.interfaceController.pushTemplate(listTemplate, animated: true)

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 29 65

Create a now playing template
The now playing template is a shared instance so you need to obtain it and configure its
properties.
Do this when the interface controller connects to your app because iOS can display the shared
now playing template on your behalf. For example, when the user taps the “Now Playing” button
on the CarPlay home screen or in your app’s navigation bar, iOS will immediately present the
shared now playing template.
This example shows an app configuring the playback rate button on the now playing template.

import CarPlay

class CarPlaySceneDelegate: UIResponder, CPTemplateApplicationSceneDelegate {

 func templateApplicationScene(_ templateApplicationScene: CPTemplateApplicationScene,

 didConnect interfaceController: CPInterfaceController) {

 let nowPlayingTemplate = CPNowPlayingTemplate.shared()

 let rateButton = CPNowPlayingPlaybackRateButton() {

 // Change the playback rate!

 }

 nowPlayingTemplate.updateNowPlayingButtons([rateButton])

 }

}

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 30 65

Work while iPhone is locked
CarPlay is frequently used while iPhone is in a locked state. Test your app throughly to ensure it
works as expected when iPhone is locked.
You won’t be able to access any of the following when launched or running while iPhone is locked.

• Files saved with NSFileProtectionComplete or
NSFileProtectionCompleteUnlessOpen.

• Keychain items with a kSecAttrAccessible attribute of
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,
kSecAttrAccessibleWhenUnlocked or
kSecAttrAccessibleWhenUnlockedThisDeviceOnly.

Launch other apps
If your app launches other apps in CarPlay, such as to get directions or make a phone call, use the
CPTemplateApplicationScene open(_:options:completionHandler:) method to launch
the other app using a URL to ensure it launches on the CarPlay screen.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 31 65

Build a CarPlay navigation app
The following section describes how to create a CarPlay navigation app.
CarPlay navigation apps have additional UI elements and capabilities that are different from other
CarPlay app types. Skip this section if you are not creating a navigation app.

Supported displays
CarPlay navigation apps can appear in the center display, the CarPlay Dashboard, and the
instrument cluster in supported vehicles. In addition, CarPlay navigation apps can supply
metadata for vehicles that display information in the instrument cluster or HUD (head-up display)
in a wide variety of vehicles. Support all capabilities in your app for a seamless experience in all
vehicle configurations.

Map in
center display

Map in
CarPlay dashboard

Map in
instrument cluster

Metadata in instrument
cluster or HUD

iOS 12 က

iOS 13.4 က က

iOS 16.4 က က က

iOS 17.4 က က က က

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 32 65

Additional templates for navigation apps
CarPlay navigation apps use additional templates to display map information, a keyboard, and
voice control feedback.

Base View
All CarPlay navigation apps start with a base view. The base view is where you draw your map.
Create the base view and attach it to the provided window when CarPlay starts.
The base view must be used exclusively to draw a map, and cannot be used to draw alerts,
overlays, or other UI elements. All UI elements that appear on the screen, including the navigation
bar and map buttons, must be implemented using other templates. Your app won’t receive direct
tap or drag events in the base view.
You will be required to draw your map on a variety of screens with different aspect ratios,
resolutions, and in light or dark mode. Get the current mode using contentStyle in your CarPlay
template application scene and receive contentStyleDidChange notifications in your scene
delegate. You must also consider the safe area (the portion of the map not obscured by buttons).
See Simulator for more information on testing with different display configurations, including
testing light and dark mode.

Base view

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 33 65

Map
The map template is a control layer that appears as an overlay over the base view and allows
users to manipulate the map. It consists of a navigation bar and map buttons drawn as individual
overlays. By default, the navigation bar appears when the user interacts with the app, and
disappears after a period of inactivity. You can customize this behavior, including whether to hide
the map buttons.
The navigation bar includes up to two leading buttons and two trailing buttons that can be
specified with icons or text.
You can also specify up to four map buttons which are shown as icons. Use the map buttons to
provide zooming and panning features. Although many cars support panning through direct
manipulation of the car’s touchscreen, there are cars that only support panning through knob or
touch pad events. CarPlay supports these cars with a “panning mode.” If your app supports any
panning features, you must allocate one of the map buttons to be a pan button that allows the
user to enter panning mode, and you must respond to the panning functions in CPMapTemplate.

Map

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 34 65

Search
The search template displays a text entry field, a list of search results, and a keyboard. Your app
parses the text by responding to updatedSearchText and updating the list of search results with
an array of CPListItem elements. You must also take action when the user selects an item from
the list by responding to selectedResult.
Note that many cars limit when the keyboard may be shown. See keyboard and list restrictions for
details.

Search

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 35 65

Voice control
The voice control template allows you to provide visual feedback during a voice control session.
CarPlay navigation apps can provide a voice control feature, but it must be restricted to navigation
functions. In addition, navigation apps must display the voice control template whenever a voice
control audio session is active.
The voice control template can only be used in navigation apps. Other CarPlay apps must use
SiriKit or Siri Shortcuts to provide voice control features.

Voice control

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 36 65

Panels
CarPlay navigation apps use panels to overlay information on the map. This includes trip previews,
route selection, route guidance, and navigation alerts. You don’t create panels directly. Instead,
use the provided APIs to trigger them.
Trip preview panel. Display up to 12 potential destinations and select one. The trip preview panel
is usually the result of a destination search. When users preview a trip, show a visual
representation of that trip in your base view.

Trip preview

Route choice panel. Display potential routes for a trip and select one. Each route should have
clear descriptions so the user can choose their preferred route. For example, a summary and
optional description for a route could be “Via I-280 South” and “Traffic is light.” When users
preview a route, show a visual representation of that route in your base view.

Route choice

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 37 65

Guidance and trip estimate panels. Display upcoming maneuvers and trip estimates.
Maneuvers are normally shown one at a time, but in cases where maneuvers appear in rapid
succession, two maneuvers may be shown. The second maneuver may be repurposed to show
lane guidance or a junction image for the first maneuver.
In addition to providing upcoming maneuvers, you should continuously update overall trip
estimates.

Guidance and trip estimate

Each maneuver can include a symbol, instruction text, estimated remaining distance, and time.
You may optionally specify multiple variants for your images and instruction text so they appear
differently in your app and the CarPlay Dashboard. This includes maneuver symbols, junction
images, notification symbols, instruction text and notification text. To specify something different,
use the dashboard variants of the properties—for example, by default symbolImage defines what
appears in your app and the CarPlay Dashboard, but if you also specify a
dashboardSymbolImage property, then it will be used in the CarPlay Dashboard.
Your app also provides metadata for maneuvers and lane guidance information that are displayed
in the instrument cluster or HUD in supported vehicles. For details, see Show metadata in the
instrument cluster or HUD.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 38 65

Use the following guide when preparing maneuver symbol assets. Be sure to provide variants for
light and dark interfaces.

Maximum size
in points

Maximum size
in pixels (3x)

Maximum size
in pixels (2x)

First maneuver symbol
(symbol and instruction on one line)

50pt x 50pt 150px x 150px 100px x 100px

First maneuver symbol
(symbol and instruction on two lines)

120pt x 50pt 360px x 150px 240px x 100px

Second maneuver symbol
(symbol and instructions)

18pt x 18pt 54px x 54px 36px x 36px

Second symbol
(symbol only)

120pt x 18pt 360px x 54px 240px x 36px

CarPlay Dashboard junction image 140pt x 100pt 420px x 300px 280px x 200px

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 39 65

Navigation alert panel. Display important, real time feedback and optionally give the user a
chance to make a decision that will affect the current route. For example, you should show an alert
if there is unexpected traffic ahead and you are recommending that the user take an alternate
route. Navigation alerts result in a notification if your app is running in the background.
Navigation alerts can consist of an image, title, subtitle, duration for which the alert is visible
before it’s automatically dismissed, and up to 2 action buttons. For example, the action buttons
could provide options to either maintain the current route, or take an alternate route. Starting in
iOS 16 you can specify a navigation alert with longer subtitle text (in prior versions of iOS the
subtitle is limited to 3 lines), no action buttons (in which case the alert will have a simple close
button), or action buttons with custom colors.

Navigation alert

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 40 65

Startup
CarPlay navigation apps declare two CarPlay scenes, one for the main app window in CarPlay, and
one for the CarPlay Dashboard. For details on how to set up a scene manifest that supports
CarPlay, see Application scene manifest example.
Provide delegates for the CarPlay scene and the CarPlay Dashboard scene. Listen for the
didConnect and didDisconnect methods to know when your app has been launched in each
scene. In the main app window, your CPTemplateApplicationSceneDelegate will be called
using the didConnect and didDisconnect methods that receive an interface controller and a
window. CPInterfaceController and a CPWindow object.
For the main app view, retain references to both the interface controller and the map content
window for the duration of the CarPlay session.

self.interfaceController = interfaceController
self.carWindow = window

Next, create a new view controller and assign it to the window’s root view controller. Use the view
controller to manage your map content as the base view in the window.

let rootViewController = MyRootViewController()
window.rootViewController = rootViewController

Finally, create a map template and assign it as the root template.

let rootTemplate: CPMapTemplate = createRootTemplate()
self.interfaceController?.setRootTemplate(rootTemplate, animated: false)

Create a default set of navigation bar buttons and map buttons and assign them to the root map
template. Specify navigation bar buttons by setting up the leadingNavigationBarButtons and
trailingNavigationBarButtons arrays. Specify map buttons by setting up the mapButtons
array.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 41 65

If your CarPlay navigation app supports panning, one of the buttons you create must be a pan
button that lets the user enter panning mode. The pan button is essential in vehicles that don’t
support panning via the touch screen.
You can update the navigation bar buttons and map buttons dynamically based on the state of the
app. For example, during active route guidance, you may choose to replace the default navigation
bar buttons with an option to end route guidance.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 42 65

Route guidance
All CarPlay navigation apps follow a standard flow for selecting a destination and providing route
guidance.

Select destination. All route guidance starts with the user selecting a destination, whether that is
the result of an on-screen search, voice command, or picking a category or destination from a list.
Preview. When a destination is selected, the user is shown a preview of the trip. At the same time,
your map in the base view typically shows a visual representation of the trip. The preview also
supports disambiguation when there are multiple matching destinations. For example, if the user
chooses to navigate to a nearby park, the preview may show several parks to choose from.
Choose route and start guidance. Once the user has confirmed the destination, they may start
route guidance. If there are multiple possible routes, your app can present the routes as options
for the user to choose from.
View trip information and upcoming maneuvers. When the user starts route guidance, show real
time information including upcoming maneuvers, and travel estimates (distance and time
remaining) for the trip.
End guidance. Route guidance continues until the user arrives at the destination, or chooses to
end route guidance.
Re-route. Your app can optionally return to an active guidance state with a new route.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 43 65

Select destination
Use CPInterfaceController to present templates that allow the user to specify a destination.
To present a new template, use pushTemplate with a supported CPTemplate class such as
CPGridTemplate, CPListTemplate, CPSearchTemplate, or CPVoiceControlTemplate.
When the user selects an item or cancels the selection, your delegate will be called with
information about the action that was taken.
You may present multiple templates in succession to support hierarchical selection. For example,
you can show a list template that includes list items which lead to additional sublists when
selected. Be sure to set showsDisclosureIndicator to true for list items that support
hierarchical browsing, and push a new list template when the list item is selected. Hierarchical
selections must never exceed five levels of depth.

Preview
After the user has selected a destination and you are ready to show trip previews, use
CPMapTemplate showTripPreviews to provide an array of up to 12 CPTrip objects.
Each CPTrip object represents a journey consisting of an origin, a destination, up to 3 route
choices, and estimates for remaining time and distance.
Use CPRouteChoice to define each route choice. Your descriptions for each route are provided
as arrays of variable length strings in descending order of length (longest string first). CarPlay will
display the longest string that fits in the available space on the screen.
For each CPTrip, be sure to provide travel estimates using CPMapTemplate updateEstimates:
and update the estimates if the remaining time or distance change.
You may also customize the names of the start, overview, and additional routes buttons shown in
the trip preview panel.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 44 65

Choose route and start guidance
When the user selects a different route to preview, the delegate selectedPreviewFor: will be
called. Respond by updating your map base view.
If the user decides to start a trip, the delegate startedTrip: will be called. Respond by starting
route guidance. At this time, use CPMapTemplate hideTripPreviews to dismiss the trip preview
panel.

mapTemplate.hideTripPreviews()

Next use CPMapTemplate startNavigationSession to start a navigation session for the
selected trip and obtain a CPNavigationSession object that represents the active navigation
session.

let session = mapTemplate.startNavigationSession(for: trip)

While you are calculating initial maneuvers, set the navigation session pause state to
CPTripPauseReasonLoading so that CarPlay can display the correct state.

session.pauseTrip(for: .CPTripPauseReasonLoading)

At this time, update the navigation bar buttons and map buttons to provide appropriate actions for
the user to manage their route.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 45 65

View trip information and upcoming maneuvers
During turn by turn guidance, show route guidance information by updating upcomingManeuvers
with information on upcoming turns. Each CPManeuver represents a single maneuver and may
include a symbol, an instruction, metadata, and estimates for remaining time and distance.

Show a maneuver in the route guidance panel

Symbol. If the maneuver has an associated symbol, such as a turn right arrow, provide an image
using symbolSet. The symbol will be shown in the route guidance card and any related
notifications. You must provide two image variants using CPImageSet—one is used for rendering
the symbol on light backgrounds, the other is used for rendering the symbol on dark backgrounds.
Instruction. Provide an instruction using instructionVariants which is an array of strings. Use
the array to provide variants of different lengths so that CarPlay can display the instruction that
best fits in the available space on the screen. For example, if the maneuver requires you to turn
right on the street named “Solar Circle” you may choose to provide 3 instruction variants “Turn
Right on Solar Circle,” “Turn Right on Solar Cir.”, and “Turn Right”. CarPlay will display the
instruction with the longest string length that fits in the available space. The array of instructions
must be provided in descending order of length (longest string first). You may optionally provide
attributedInstructionVariants to include embedded images in the instruction. This is
useful if you need to display special symbols, such as a highway symbol, as part of the instruction.
Note that other text attributes including text size and fonts will be ignored. If you provide
attributedInstructionVariants, always provide text-only instructionVariants since
CarPlay vehicles may not always support attributed strings.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 46 65

Metadata. Provide maneuver type, maneuver state, junction type, traffic side, and lane guidance
information for display in the instrument cluster or HUD of supported vehicles. For details, see
Show metadata in the instrument cluster or HUD.
Add as many maneuvers as possible to upcomingManeuvers. At minimum, your app must
maintain at least one upcoming turn in the maneuvers array at all times, and in cases where there
are two maneuvers in quick succession, provide a second maneuver which may be shown on the
screen simultaneously.
If you provide a second maneuver, you can customize its appearance by specifying a symbol style.
In CPMapTemplateDelegate, return a CPManeuverDisplayStyle for the maneuver when
requested. The display style only applies to the second maneuver.
If your app provides lane guidance information, you must use the second maneuver to show lane
guidance. Create a second maneuver containing symbolSet with dark and light images that
occupy the full width of the guidance panel (maximum size 120pt x 18pt), provide an empty array
for instructionVariants, and in the CPMapTemplateDelegate, return a symbol style of
CPManeuverDisplayStyleSymbolOnly for the maneuver.

Show a maneuver with lane guidance information

Your app is responsible for continuously updating estimates for remaining time and distance for
each maneuver, and for the overall trip. Use CPNavigationSession updateEstimates: to
update estimates for each maneuver, and CPMapTemplate updateEstimates to update overall
estimates for the trip. Only update the values when significant changes occur, such as when the
number of remaining minutes changes.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 47 65

If you need to display an alert related to the map or navigation, create a CPNavigationAlert and
use CPMapTemplate present to show it. Navigation alerts can be configured to automatically
disappear after a fixed interval. They may also be shown as a notification, even when your app is
not in the foreground.
For each maneuver and navigation alert, specify whether it should be shown as a CarPlay
notification when your app is running in the background. Respond to the
shouldShowNotificationFor delegate call to specify the maneuver or navigation alert
behavior. In the case of a maneuver, you can optionally include updating travel estimates as part
of the notification.
In addition to the route guidance panel, maneuvers may also be shown in notifications, or sent to
vehicles that support the display of CarPlay metadata in their instrument cluster or heads up
display.

End guidance
When route guidance is paused, canceled, or finished, call the appropriate method in
CPNavigationSession.
In some cases, CarPlay route guidance may be canceled by the system. For example, if the car’s
native navigation system starts route guidance, CarPlay route guidance automatically terminates.
In this case, your delegate will receive mapTemplateDidCancelNavigation and you should end
route guidance immediately.

Re-route
Starting in iOS 17.4, your app can programmatically return to an active guidance state. Use the
CPNavigationSession method resumeTrip and provide a CPRouteInformation object with
details about the new route.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 48 65

Keyboard and list restrictions
Some cars limit keyboard use and the lengths of lists while driving. iOS automatically disables the
keyboard and reduces list lengths when the car indicates it should do so. However, if your app
needs to adjust other user interface elements in response to these changes, you can receive
notifications when the limits change. For example, you may want to disable a keyboard icon or
adjust list items when list lengths are shorter. Use CPSessionConfiguration to observe
limitedUserInterfaces.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 49 65

Voice prompts
Voice prompts are essential for a route guidance experience, but you must ensure that your app is
a good audio citizen and works well with other audio sources on iPhone and in the car.

Audio session configuration
CarPlay navigation apps must use the following audio session configuration when playing voice
prompts for upcoming maneuvers.
1. Set the audio session category to AVAudioSessionCategoryPlayback.
2. Set the audio session mode to AVAudioSessionModeVoicePrompt.
3. Set the audio session category options to

AVAudioSessionCategoryOptionInterruptSpokenAudioAndMixWithOthers and
AVAudioSessionCategoryOptionDuckOthers.

Voice prompts are played over a separate audio channel and mixed with audio sources in the car,
including the car’s own audio sources such as FM radio.
AVAudioSessionCategoryOptionInterruptSpokenAudioAndMixWithOthers allows voice
prompts to pause certain apps with spoken audio (such as podcasts or audio books) and mix with
other apps such as music.
AVAudioSessionCategoryOptionDuckOthers allows voice prompts to duck (lower the volume)
for other apps such as music while your audio is played.

Activate and deactivate the audio session
Keep your audio session deactivated until you are ready to play a voice prompt. Call setActive
with YES only when a voice prompt is ready to play. You may keep the audio session active for
short durations if you know that multiple audio prompts are going to be played in rapid
succession. However, while your AVAudioSession is active, music apps will remain ducked, and
apps with spoken audio will remain paused. Don’t hold on to the active state for more than few
seconds if audio prompts are not playing.
When you are done playing a voice prompt, call setActive with NO to allow other audio to
resume.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 50 65

Prompt style
In some cases it doesn’t make sense to play a voice prompt. For example, the user may be on a
phone call or in the middle of using Siri.
Just before playing each voice prompt, check the audio session’s promptStyle. If necessary, it
will return a hint to alter the type of prompt you should play in response to other system audio.

Prompt style Action
None Don’t play any sound
Short Play a tone
Normal Play a full spoken prompt

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 51 65

Show second map in CarPlay Dashboard or the instrument cluster
People using your navigation app want to see important information, even when your app is not
the foreground app in CarPlay.
Support for CarPlay Dashboard. Starting with iOS 13.4, you can add support for CarPlay
Dashboard. Display your map, upcoming maneuvers, and dashboard buttons so they are available
at a glance inside CarPlay Dashboard.
Support for the instrument cluster. Starting with iOS 15.4, you can add support for instrument
cluster displays in supported vehicles. Display your map and upcoming maneuvers, so they are
visible at a glance in the car’s instrument cluster display.
It’s easy to support both CarPlay Dashboard and instrument cluster displays since they work in
the same way.
CPTemplateApplicationDashboardScene and
CPTemplateApplicationInstrumentClusterScene are new UIScene subclasses that
CarPlay creates when it determines that your app should appear in CarPlay Dashboard or the
instrument cluster.
CPDashboardController and CPDashboardButton let you manage the CarPlay Dashboard
and the buttons that appear inside it. CPInstrumentClusterController lets you manage
instrument cluster displays.

Indicate support for the CarPlay dashboard and instrument cluster
In your application scene manifest, set CPSupportsDashboardNavigationScene and
CPSupportsInstrumentClusterNavigationScene to true and provide corresponding keys for
your scenes and delegates. Also see Application scene manifest example.

Create scene delegates
Define delegates for CarPlay Dashboard and instrument cluster scenes just like you would for the
main template application scene. These delegates conform to
CPTemplateApplicationDashboardSceneDelegate and
CPTemplateApplicationInstrumentClusterSceneDelegate and will be called with
instances of CPDashboardController or CPInstrumentClusterController.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 52 65

Draw your content
Use the provided windows to draw map content for display in the CarPlay Dashboard or
instrument cluster.
When drawing maps in the instrument cluster, you must follow these guidelines:
• Draw a minimal version of your map with minimal clutter
• Show a detailed view of the upcoming route, not an overview
• Ensure the current heading is facing up (the top of the screen)
Also, as with all maps rendered in CarPlay, be sure to observe safe areas, and light and dark mode
settings (similar to your base view, use the contentMode in
CPTemplateApplicationDashboardScene or
CPTemplateApplicationInstrumentClusterScene).
When navigation begins in your app using CPMapTemplate and CPNavigationSession, CarPlay
automatically displays maneuver information.
For the CarPlay Dashboard, you can also provide two instances of CPDashboardButton to
CPDashboardController. These buttons appear in the guidance card area when your app is not
actively navigating. People can interact with your app through the dashboard buttons as well as
within your main app interface.
For instrument cluster displays, some cars may allow users to zoom the map in and out. It’s your
responsibility to respond to these events in your delegate. Similarly, if your app includes a
compass or speed limit, the corresponding delegates will tell your app whether it’s appropriate to
draw them or not. Depending on the shape of the car’s instrument cluster, your view area may be
partially obscured by other elements in the car. Override viewSafeAreaInsetsDidChange on
your view controller to know when the safe area changes, and use the safeAreaLayoutGuide on
your cluster view to ensure that important content in the area of the view is always visible.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 53 65

Show metadata in the instrument cluster or HUD
People using your navigation app want to see important information in the instrument cluster or
HUD (Head-Up Display) in supported vehicles. Many vehicles, even those without a full digital
instrument cluster display, show metadata for upcoming maneuvers in smaller displays inside their
instrument cluster. Modern vehicles with a HUD also show metadata on their windshield.
Starting with iOS 17.4, your app can provide metadata for upcoming maneuvers. This includes
maneuver state, maneuver type (e.g. “turn right”, “make a U-turn”), junction type, and lane
guidance information.
Declare support for metadata. Use the delegate method
mapTemplateShouldProvideNavigationMetadata in CPMapTemplateDelegate to indicate
that your app supports sending metadata to the vehicle.
Provide information about upcoming maneuvers and the current trip. Supply multiple
maneuvers, including maneuver type and lane guidance information, when route guidance starts.
Use add CPManeuver and add CPLaneGuidance.
Provide as many maneuvers as possible to support vehicles that display multiple maneuvers in the
instrument cluster or HUD, and to improve performance. Additional maneuvers can be added
during route guidance.
Your app should also set the current road name, and update the maneuver state which indicates
progress within a maneuver. When approaching a maneuver, the maneuver state should transition
from continue ခ initial ခ prepare ခ execute ခ continue.

Required maneuver properties include maneuverType, junctionType and trafficSide. Note
that maneuver metadata supplements the symbol and instruction which is used on the
CarPlay screen.

Maneuver state Description
continue Continue along this route until next maneuver
initial Maneuver is in the near future
prepare Maneuver is in the immediate future
execute In maneuver

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 54 65

For lane guidance, use CPLaneGuidance and CPLane to provide lane guidance metadata for the
vehicle. Again, lane guidance metadata supplements showing lane guidance using symbolSet on
the CarPlay screen.

Manuever types
For the maneuver type, select from one of the following predefined values.

Maneuver type Description
arriveAtDestination Destination has been reached, navigation will end

arriveAtDestinationLeft Destination has been reached; it is on the left and navigation
will end

arriveAtDestinationRight Destination has been reached; it is on the right and
navigation will end

arriveEndOfDirections Navigation has completed, but the rest of the journey will
need to use another transport method

arriveEndOfNavigation Navigation has completed, but the rest of the journey will
need to use another transport method

changeFerry Change to a different ferry

changeHighway Highway to highway change with implied or unknown side of
the road

changeHighwayLeft Highway to highway change from the left side of the road

changeHighwayRight Highway to highway change from the right side of the road

enterRoundabout Enter roundabout

enter_Ferry Enter ferry

exitFerry Exit ferry

exitRoundabout Exit roundabout

followRoad Continue to follow the road the vehicle is currently on

highwayOffRampLeft Exit highway on left

highwayOffRampRight Exit highway on right

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 55 65

keepLeft Usually for bifurcations or other smooth maneuvers
(compare to slightLeftTurn)

keepRight Usually for bifurcations or other smooth maneuvers
(compare to slightRightTurn)

leftTurn Angle is between -45° and -135°

leftTurnAtEnd At the end of the road, turn left

noTurn No turn (default value)

offRamp Take ramp to leave highway

onRamp Take ramp to merge onto highway

rightTurn Angle is between 45° and 135°

rightTurnAtEnd At the end of the road, turn right

roundaboutExit1 Exit roundabout at the 1st street

roundaboutExit10 Exit roundabout at the 10th street

roundaboutExit11 Exit roundabout at the 11th street

roundaboutExit12 Exit roundabout at the 12th street

roundaboutExit13 Exit roundabout at the 13th street

roundaboutExit14 Exit roundabout at the 14th street

roundaboutExit15 Exit roundabout at the 15th street

roundaboutExit16 Exit roundabout at the 16th street

roundaboutExit17 Exit roundabout at the 17th street

roundaboutExit18 Exit roundabout at the 18th street

roundaboutExit19 Exit roundabout at the 19th street

roundaboutExit2 Exit roundabout at the 2nd street

roundaboutExit3 Exit roundabout at the 3rd street

roundaboutExit4 Exit roundabout at the 4th street

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 56 65

roundaboutExit5 Exit roundabout at the 5th street

roundaboutExit6 Exit roundabout at the 6th street

roundaboutExit7 Exit roundabout at the 7th street

roundaboutExit8 Exit roundabout at the 8th street

roundaboutExit9 Exit roundabout at the 9th street

sharpLeftTurn Angle is between -135° and -180°

sharpRightTurn Angle is between 135° and 180°

slightLeftTurn Turn onto a different road (compare to keepLeft)

slightRightTurn Turn onto a different road (compare to keepRight)

startRoute Proceed to the beginning of the route

startRouteWithUTurn Make a U-turn and proceed to the route

straightAhead Continue straight through the intersection (implies a road
name will change)

uTurn Make a U-turn and proceed to the route

uTurnAtRoundabout Use roundabout to make a U-turn

uTurnWhenPossible Make a U-turn when possible

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 57 65

Junction types
For the junction type, select from one of the following predefined values.

Traffic side
For the traffic side, select from one of the following predefined values.

Lane angles and lane status
Lane angles specify angles (or a single angle) between -180° and +180°. For the lane status,
select from one of the following predefined values.

intersection Single intersection with junction elements representing roads coming to a
common point

roundabout Roundabout with junction elements representing roads exiting the
roundabout

right Right (or anti-clockwise for roundabouts)

left Left (or clockwise for roundabouts)

notGood The vehicle should not take this lane

good The vehicle can take this lane, but may need to move lanes again before
upcoming maneuvers

preferred The vehicle should take this lane to be in the best position for upcoming
maneuvers

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 58 65

Test your navigation app
If you are developing a navigation app, it’s important to try different display configurations to
ensure your map drawing code works correctly. Note that CarPlay supports both landscape and
portrait displays and can scale from 2x at low resolutions to 3x at high resolutions. Here are some
recommended screen sizes to test.

In CarPlay Simulator, simply click Configure to change the display configuration.
In Xcode Simulator, first enable extra options by entering the following command in Terminal
before launching Xcode Simulator. Xcode Simulator does not simulate the instrument cluster or
show metadata.

defaults write com.apple.iphonesimulator CarPlayExtraOptions -bool YES

Width and height Scale
Minimum
(smallest possible CarPlay screen)

748px x 456px 2.0

Standard
(default resolution typical of many CarPlay screens)

800px x 480px 2.0

High resolution
(typical of larger CarPlay screens)

1920px x 720px 3.0

Portrait
(example of a vertical CarPlay screen)

900px x 1200px 3.0

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 59 65

Test maps in instrument cluster displays
Use CarPlay Simulator to test your map in instrument cluster displays.
Click Configure | Cluster Display, turn on Instrument Cluster Display enabled and specify scale
factor, screen size, safe area, and safe area sizes. Here are some recommended configurations to
test.

Test metadata in the instrument cluster or HUD
Use CarPlay Simulator to confirm that your app is correctly supplying metadata for display in the
instrument cluster or HUD in supported vehicles.
With an active navigation session, click Navigation to view the next upcoming maneuver.

Click Show More to see the full sequence of upcoming maneuvers provided by your app. Inside
the larger information screen, click the table icons to Maneuvers or Lane Guidances to view
detailed information.

Scale Factor Size Safe Area Origin Safe Area Size
Minimum 3x 300 x 200 0, 0 300 x 200
Basic 2x 640 x 480 0, 0 640 x 480
Widescreen
(wide safe area)

3x 1920 x 720 420, 0 1080 x 720

Widescreen
(small safe area)

2x 1920 x 720 640, 120 640 x 480

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 60 65

Application scene manifest example
The following is an example of an application scene manifest that supports both the CarPlay
Dashboard and instrument cluster displays.

<key>UIApplicationSceneManifest</key>

<dict>

 <!-- Indicate support for CarPlay dashboard -->

 <key>CPSupportsDashboardNavigationScene</key>

 <true/>

 <!-- Indicate support for instrument cluster displays -->

 <key>CPSupportsInstrumentClusterNavigationScene</key>

 <true/>

 <!-- Indicate support for multiple scenes -->

 <key>UIApplicationSupportsMultipleScenes</key>

 <true/>

 <key>UISceneConfigurations</key>

 <dict>

 <!-- For device scenes -->

 <key>UIWindowSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>UIWindowScene</string>

 <key>UISceneConfigurationName</key>

 <string>Phone</string>

 <key>UISceneDelegateClassName</key>

 <string>MyAppWindowSceneDelegate</string>

 </dict>

 </array>

 <!-- For the main CarPlay scene -->

 <key>CPTemplateApplicationSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>CPTemplateApplicationScene</string>

 <key>UISceneConfigurationName</key>

 <string>CarPlay</string>

 <key>UISceneDelegateClassName</key>

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 61 65

 <string>MyAppCarPlaySceneDelegate</string>

 </dict>

 </array>

 <!-- For the CarPlay Dashboard scene -->

 <key>CPTemplateApplicationDashboardSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>CPTemplateApplicationDashboardScene</string>

 <key>UISceneConfigurationName</key>

 <string>CarPlay-Dashboard</string>

 <key>UISceneDelegateClassName</key>

 <string>MyAppCarPlayDashboardSceneDelegate</string>

 </dict>

 </array>

 <!-- For the CarPlay instrument cluster scene -->

 <key>CPTemplateApplicationInstrumentClusterSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>CPTemplateApplicationInstrumentClusterScene</string>

 <key>UISceneConfigurationName</key>

 <string>CarPlay-Instrument-Cluster</string>

 <key>UISceneDelegateClassName</key>

 <string>MyAppCarPlayInstrumentClusterSceneDelegate</string>

 </dict>

 </array>

 </dict>

</dict>

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 62 65

Sample code
The following sample code is available to help you get started developing your CarPlay app.

Integrating CarPlay with your music app
CarPlay Music is a sample music app that demonstrates how to display a custom UI from a
CarPlay–enabled vehicle. CarPlay Music integrates with the CarPlay framework by implementing
the CPNowPlayingTemplate and CPListTemplate. This sample’s iOS app component provides
a logging interface to help you understand the life cycle of a CarPlay app, as well as a music
controller.
Download

Integrating CarPlay with your quick food ordering app
CarPlay Quick-Ordering is a sample quick food ordering app that demonstrates how to display
custom ordering options in a vehicle that has CarPlay enabled. The sample app integrates with the
CarPlay framework by implementing CPTemplate subclasses, such as
CPPointOfInterestTemplate and CPListTemplate. This sample’s iOS app component
provides a logging interface to help you understand the life cycle of a CarPlay app.
Download

Integrating CarPlay with your navigation app
Coastal Roads is a sample navigation app that demonstrates how to display a custom map and
navigation instructions in a CarPlay–enabled vehicle. Coastal Roads integrates with the CarPlay
framework by implementing the map and additional CPTemplate subclasses, such as
CPGridTemplate and CPListTemplate. This sample’s iOS app component provides a logging
interface to help you understand the life cycle of a CarPlay app.
Download

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 63 65

https://developer.apple.com/documentation/carplay/integrating_carplay_with_your_music_app
https://developer.apple.com/documentation/carplay/integrating_carplay_with_your_quick-ordering_app
https://developer.apple.com/documentation/carplay/integrating_carplay_with_your_navigation_app

Publish your CarPlay app
When you are ready to publish your CarPlay app on the App Store, follow the same process as for
any iOS app and use App Store Connect to submit your app.
Ensure that your app follows the CarPlay App Guidelines.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 64 65

Apple Inc.
Copyright © 2024 Apple Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of Apple
Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer or
device for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
No licenses, express or implied, are
granted with respect to any of the
technology described in this document.
Apple retains all intellectual property
rights associated with the technology
described in this document. This
document is intended to assist
application developers to develop
applications only for Apple-branded
products.
Apple Inc.
One Apple Park Way
Cupertino, CA 95014
408-996-1010
Apple is a trademark of Apple Inc.,
registered in the U.S. and other countries.
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,”
AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT, ERROR OR INACCURACY IN
THIS DOCUMENT, even if advised of
the possibility of such damages.
Some jurisdictions do not allow the
exclusion of implied warranties or
liability, so the above exclusion may not
apply to you.

2024-03-05 | Copyright © 2024 Apple Inc. All Rights Reserved.
Page of 65 65

	Introduction
	Overview
	CarPlay app entitlements

	CarPlay app guidelines
	Development environment
	Entitlements
	Deprecated entitlements

	Simulators
	CarPlay Simulator
	Xcode Simulator
	Testing using a vehicle or aftermarket head unit

	Templates
	Action sheet
	Alert
	Contact
	Grid
	Information
	List
	Now playing
	Point of interest
	Tab bar

	Notifications
	Request authorization to show notifications
	Create a notification category with the CarPlay option

	Assets
	Audio handling
	Playback
	Recording

	Build a CarPlay app
	Startup
	Create a list template
	Create a now playing template
	Work while iPhone is locked
	Launch other apps

	Build a CarPlay navigation app
	Supported displays
	Additional templates for navigation apps
	Base View
	Map
	Search
	Voice control
	Panels

	Startup
	Route guidance
	Select destination
	Preview
	Choose route and start guidance
	View trip information and upcoming maneuvers
	End guidance
	Re-route

	Keyboard and list restrictions
	Voice prompts
	Audio session configuration
	Activate and deactivate the audio session
	Prompt style

	Show second map in CarPlay Dashboard or the instrument cluster
	Indicate support for the CarPlay dashboard and instrument cluster
	Create scene delegates
	Draw your content

	Show metadata in the instrument cluster or HUD
	Manuever types
	Junction types
	Traffic side
	Lane angles and lane status

	Test your navigation app
	Test maps in instrument cluster displays
	Test metadata in the instrument cluster or HUD
	Application scene manifest example

	Sample code
	Integrating CarPlay with your music app
	Integrating CarPlay with your quick food ordering app
	Integrating CarPlay with your navigation app

	Publish your CarPlay app

